Copied to
clipboard

G = C24.155D4order 128 = 27

10th non-split extension by C24 of D4 acting via D4/C22=C2

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C24.155D4, C23.17Q16, C23.41SD16, C4.53C22wrC2, Q8:3(C22:C4), (C2xQ8).206D4, (C22xQ8):14C4, (Q8xC23).3C2, C2.1(Q8:D4), (C22xC4).263D4, C23.738(C2xD4), (C22xC8).6C22, C22.23(C2xQ16), C22.73C22wrC2, C22:3(Q8:C4), C2.1(C22:Q16), C22.45(C2xSD16), C2.12(C24:3C4), C23.7Q8.5C2, (C23xC4).232C22, C23.195(C22:C4), (C22xC4).1321C23, C22.46(C8.C22), (C22xQ8).380C22, C2.17(C23.38D4), C4.2(C2xC22:C4), (C2xQ8:C4):1C2, (C2xC4).1311(C2xD4), (C2xC22:C8).12C2, (C2xC4:C4).29C22, (C2xQ8).183(C2xC4), C2.17(C2xQ8:C4), (C22xC4).261(C2xC4), (C2xC4).359(C22xC4), (C2xC4).120(C22:C4), C22.240(C2xC22:C4), SmallGroup(128,519)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C24.155D4
C1C2C22C23C22xC4C23xC4Q8xC23 — C24.155D4
C1C2C2xC4 — C24.155D4
C1C23C23xC4 — C24.155D4
C1C2C2C22xC4 — C24.155D4

Generators and relations for C24.155D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=c, eae-1=faf-1=ab=ba, ac=ca, ad=da, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=ce3 >

Subgroups: 540 in 296 conjugacy classes, 84 normal (18 characteristic)
C1, C2, C2, C2, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, Q8, Q8, C23, C23, C23, C22:C4, C4:C4, C2xC8, C22xC4, C22xC4, C22xC4, C2xQ8, C2xQ8, C24, C2.C42, C22:C8, Q8:C4, C2xC22:C4, C2xC4:C4, C22xC8, C23xC4, C23xC4, C22xQ8, C22xQ8, C23.7Q8, C2xC22:C8, C2xQ8:C4, Q8xC23, C24.155D4
Quotients: C1, C2, C4, C22, C2xC4, D4, C23, C22:C4, SD16, Q16, C22xC4, C2xD4, Q8:C4, C2xC22:C4, C22wrC2, C2xSD16, C2xQ16, C8.C22, C24:3C4, C2xQ8:C4, C23.38D4, Q8:D4, C22:Q16, C24.155D4

Smallest permutation representation of C24.155D4
On 64 points
Generators in S64
(1 35)(2 55)(3 37)(4 49)(5 39)(6 51)(7 33)(8 53)(9 47)(10 22)(11 41)(12 24)(13 43)(14 18)(15 45)(16 20)(17 26)(19 28)(21 30)(23 32)(25 42)(27 44)(29 46)(31 48)(34 58)(36 60)(38 62)(40 64)(50 63)(52 57)(54 59)(56 61)
(1 59)(2 60)(3 61)(4 62)(5 63)(6 64)(7 57)(8 58)(9 30)(10 31)(11 32)(12 25)(13 26)(14 27)(15 28)(16 29)(17 43)(18 44)(19 45)(20 46)(21 47)(22 48)(23 41)(24 42)(33 52)(34 53)(35 54)(36 55)(37 56)(38 49)(39 50)(40 51)
(1 35)(2 36)(3 37)(4 38)(5 39)(6 40)(7 33)(8 34)(9 47)(10 48)(11 41)(12 42)(13 43)(14 44)(15 45)(16 46)(17 26)(18 27)(19 28)(20 29)(21 30)(22 31)(23 32)(24 25)(49 62)(50 63)(51 64)(52 57)(53 58)(54 59)(55 60)(56 61)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 18 35 27)(2 30 36 21)(3 24 37 25)(4 28 38 19)(5 22 39 31)(6 26 40 17)(7 20 33 29)(8 32 34 23)(9 55 47 60)(10 63 48 50)(11 53 41 58)(12 61 42 56)(13 51 43 64)(14 59 44 54)(15 49 45 62)(16 57 46 52)

G:=sub<Sym(64)| (1,35)(2,55)(3,37)(4,49)(5,39)(6,51)(7,33)(8,53)(9,47)(10,22)(11,41)(12,24)(13,43)(14,18)(15,45)(16,20)(17,26)(19,28)(21,30)(23,32)(25,42)(27,44)(29,46)(31,48)(34,58)(36,60)(38,62)(40,64)(50,63)(52,57)(54,59)(56,61), (1,59)(2,60)(3,61)(4,62)(5,63)(6,64)(7,57)(8,58)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,41)(24,42)(33,52)(34,53)(35,54)(36,55)(37,56)(38,49)(39,50)(40,51), (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,47)(10,48)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,25)(49,62)(50,63)(51,64)(52,57)(53,58)(54,59)(55,60)(56,61), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,18,35,27)(2,30,36,21)(3,24,37,25)(4,28,38,19)(5,22,39,31)(6,26,40,17)(7,20,33,29)(8,32,34,23)(9,55,47,60)(10,63,48,50)(11,53,41,58)(12,61,42,56)(13,51,43,64)(14,59,44,54)(15,49,45,62)(16,57,46,52)>;

G:=Group( (1,35)(2,55)(3,37)(4,49)(5,39)(6,51)(7,33)(8,53)(9,47)(10,22)(11,41)(12,24)(13,43)(14,18)(15,45)(16,20)(17,26)(19,28)(21,30)(23,32)(25,42)(27,44)(29,46)(31,48)(34,58)(36,60)(38,62)(40,64)(50,63)(52,57)(54,59)(56,61), (1,59)(2,60)(3,61)(4,62)(5,63)(6,64)(7,57)(8,58)(9,30)(10,31)(11,32)(12,25)(13,26)(14,27)(15,28)(16,29)(17,43)(18,44)(19,45)(20,46)(21,47)(22,48)(23,41)(24,42)(33,52)(34,53)(35,54)(36,55)(37,56)(38,49)(39,50)(40,51), (1,35)(2,36)(3,37)(4,38)(5,39)(6,40)(7,33)(8,34)(9,47)(10,48)(11,41)(12,42)(13,43)(14,44)(15,45)(16,46)(17,26)(18,27)(19,28)(20,29)(21,30)(22,31)(23,32)(24,25)(49,62)(50,63)(51,64)(52,57)(53,58)(54,59)(55,60)(56,61), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,18,35,27)(2,30,36,21)(3,24,37,25)(4,28,38,19)(5,22,39,31)(6,26,40,17)(7,20,33,29)(8,32,34,23)(9,55,47,60)(10,63,48,50)(11,53,41,58)(12,61,42,56)(13,51,43,64)(14,59,44,54)(15,49,45,62)(16,57,46,52) );

G=PermutationGroup([[(1,35),(2,55),(3,37),(4,49),(5,39),(6,51),(7,33),(8,53),(9,47),(10,22),(11,41),(12,24),(13,43),(14,18),(15,45),(16,20),(17,26),(19,28),(21,30),(23,32),(25,42),(27,44),(29,46),(31,48),(34,58),(36,60),(38,62),(40,64),(50,63),(52,57),(54,59),(56,61)], [(1,59),(2,60),(3,61),(4,62),(5,63),(6,64),(7,57),(8,58),(9,30),(10,31),(11,32),(12,25),(13,26),(14,27),(15,28),(16,29),(17,43),(18,44),(19,45),(20,46),(21,47),(22,48),(23,41),(24,42),(33,52),(34,53),(35,54),(36,55),(37,56),(38,49),(39,50),(40,51)], [(1,35),(2,36),(3,37),(4,38),(5,39),(6,40),(7,33),(8,34),(9,47),(10,48),(11,41),(12,42),(13,43),(14,44),(15,45),(16,46),(17,26),(18,27),(19,28),(20,29),(21,30),(22,31),(23,32),(24,25),(49,62),(50,63),(51,64),(52,57),(53,58),(54,59),(55,60),(56,61)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,18,35,27),(2,30,36,21),(3,24,37,25),(4,28,38,19),(5,22,39,31),(6,26,40,17),(7,20,33,29),(8,32,34,23),(9,55,47,60),(10,63,48,50),(11,53,41,58),(12,61,42,56),(13,51,43,64),(14,59,44,54),(15,49,45,62),(16,57,46,52)]])

38 conjugacy classes

class 1 2A···2G2H2I2J2K4A4B4C4D4E···4N4O4P4Q4R8A···8H
order12···2222244444···444448···8
size11···1222222224···488884···4

38 irreducible representations

dim111111222224
type++++++++--
imageC1C2C2C2C2C4D4D4D4SD16Q16C8.C22
kernelC24.155D4C23.7Q8C2xC22:C8C2xQ8:C4Q8xC23C22xQ8C22xC4C2xQ8C24C23C23C22
# reps111418381442

Matrix representation of C24.155D4 in GL6(F17)

1600000
0160000
001000
000100
0000160
000071
,
100000
010000
001000
000100
0000160
0000016
,
1600000
0160000
001000
000100
0000160
0000016
,
1600000
0160000
0016000
0001600
000010
000001
,
3140000
330000
0012500
00121200
00001015
000077
,
400000
0130000
000100
001000
00001015
000087

G:=sub<GL(6,GF(17))| [16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,7,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,3,0,0,0,0,14,3,0,0,0,0,0,0,12,12,0,0,0,0,5,12,0,0,0,0,0,0,10,7,0,0,0,0,15,7],[4,0,0,0,0,0,0,13,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,10,8,0,0,0,0,15,7] >;

C24.155D4 in GAP, Magma, Sage, TeX

C_2^4._{155}D_4
% in TeX

G:=Group("C2^4.155D4");
// GroupNames label

G:=SmallGroup(128,519);
// by ID

G=gap.SmallGroup(128,519);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,456,422,2019,1018,248]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=c,e*a*e^-1=f*a*f^-1=a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*e^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<